1,337 research outputs found

    Reverse-time migration-based reflection tomography using teleseismic free surface multiples

    Get PDF
    Converted and multiply reflected phases from teleseismic events are routinely used to create structural images of the crust–mantle boundary (Moho) and the elasticity contrasts within the crust and upper mantle. The accuracy of these images is to a large extent determined by the background velocity model used to propagate these phases to depth. In order to improve estimates of 3-D velocity variations and, hence, improve imaging, we develop a method of reverse-time migration-based reflection tomography for use with wavefields from teleseismic earthquakes recorded at broad-band seismograph arrays. Reflection tomography makes use of data redundancy—that is, the ability to generate numerous structural images of the subsurface with different parts of the wavefield. In exploration seismology (where it is known as migration velocity analysis) reflection tomography typically involves the generation of an extended image (e.g. offset- or angle-gathers), and the fitness of the background model is evaluated through the application of image-domain annihilators. In regional-scale passive source seismology, however, annihilation-based methods are inadequate because the sparse and irregular distribution of teleseismic sources is not likely to produce illumination over a sufficient range of angles. To overcome this problem we turn towards a source-indexed moveout scheme. Instead of extended image annihilation, we determine the success of the tomographic velocity model by cross correlating images produced with multiply scattered waves from different teleseismic sources. The optimal velocity model is the one that minimizes correlation power between windowed images away from zero depth shift. We base our inversion scheme on the seismic adjoint method and a conjugate gradient solver. For each image pair, the update direction is determined by correlations between downgoing wavefields with upgoing adjoint wavefields for both images. The sensitivity kernels used in this method is similar to those found in other forms of adjoint tomography, but their shapes are controlled by the spatial distribution of the error function. We present the method and a proof-of-concept with 2-D synthetic data

    Source-Indexed Migration Velocity Analysis with Global Passive Data

    Get PDF
    The reverse-time migration of global seismic data generated by free-surface multiples is regularly used to constrain the crustal structure, but its accuracy is to a large extent determined by the accuracy of the 3-D background velocity model used for wave propagation. To this improve the velocity model and hence the accuracy of the migrated image, we wish to apply the technique of migration velocity analysis (MVA) to global passive data. Applications of MVA in the active setting typically focus on o ffset- or angle-gather annihilation, a process that takes advantage of data redundancy to form an extended image, and then applies an annihilation operator to determine the success of image formation. Due to the nature of regional-scale passive seismic arrays, it is unlikely that the data in most of these studies will be su cient to form an extended image volume for use in annihilation-based MVA. In order to make use of the sparse and irregular array design of these arrays, we turn towards a shot-pro le moveout scheme for migration velocity analysis introduced by Xie and Yang (2008). In the place of extended image annihilation, we determine the success of the migration velocity model by using a weighted image correlation power norm. We compare pairs of images formed by migrating each teleseismic source by image cross-correlation in the depth direction. We look for a suitable background model by penalizing the amount of correlation power away from zero depth shift. The total weighted correlation power between source-pro le images is then used as the error function and optimized via conjugate gradient. We present the method and a proof-of-concept with 2-D synthetic data

    Recording advances for neural prosthetics

    Get PDF
    An important challenge for neural prosthetics research is to record from populations of neurons over long periods of time, ideally for the lifetime of the patient. Two new advances toward this goal are described, the use of local field potentials (LFPs) and autonomously positioned recording electrodes. LFPs are the composite extracellular potential field from several hundreds of neurons around the electrode tip. LFP recordings can be maintained for longer periods of time than single cell recordings. We find that similar information can be decoded from LFP and spike recordings, with better performance for state decodes with LFPs and, depending on the area, equivalent or slightly less than equivalent performance for signaling the direction of planned movements. Movable electrodes in microdrives can be adjusted in the tissue to optimize recordings, but their movements must be automated to be a practical benefit to patients. We have developed automation algorithms and a meso-scale autonomous electrode testbed, and demonstrated that this system can autonomously isolate and maintain the recorded signal quality of single cells in the cortex of awake, behaving monkeys. These two advances show promise for developing very long term recording for neural prosthetic applications

    Interferon-γ Stimulates Monocyte Chemotactic Protein-1 Expression by Monocytes

    Get PDF
    Monocyte chemotactic protein (MCP-1) is a specific monocyte chemoattractant and activating factor produced by both immune cells (mononuclear phagocytes and lymphocytes) and non-immune cells (parenchymal and stromal cells). In order to define the conditions under which human monocytes express MCP-1, monocytes were exposed to IFN-γ, IL- lβ, TNF-α, IL-4 or PHA under serum free conditions. There was no significant MCP-1 production by monocytes following exposure to IL-lβ, TNF-α or IL-4. In contrast, stimulation with IFN-γ resulted in a dose dependent increase in MCP-1 protein and mRNA expression. Simultaneous stimulation with IFN-γ and IL-1β or TNF-α resulted in no further increase in MCP-1 production. It is concluded that IFN-γ, primarily a product of TH1 T lymphocytes, stimulates the expression of MCP-1 by monocytes

    Hurricane impacts on the Caribbean coastal/marine environment : using scientific assessment to plan for the future

    Get PDF
    The passage of Hurricane Hugo through the eastern Caribbean provided a unique opportunity for multidisciplinary study of (1) the effects of severe storms on tropical coastal and marine ecosystems, and (2) the physical and biological responses of those ecosystems to intense storm-induced changes. In addition to its direct value as basic science, this study can be used to facilitate development of improved coastal and marine resource management capabilities.Funding was provided by the Andrew W. Mellon Foundation to the Coastal Research Center of the Woods Hole Oceanographic Institution (WHOI) and the NOAA National Sea Grant College Program Offce, Department of Commerce, under Grant No. NA86-AA-D-90

    Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope

    Get PDF
    This paper discusses biomechanical issues that are related to the locomotion of a robotic endoscope in the human small intestine. The robot propels itself by pushing against the intestinal walls, much like a pipe crawler. However, the small intestine is not a rigid pipe; and locomotion in it is further complicated by the fact that the bowel is susceptible to damage. With the goal of engineering a safe and reliable machine, the biomechanical properties of the small bowel are studied and related to the mechanics of robotic endoscope locomotion through the small intestine

    Generation of coherent terahertz pulses in Ruby at room temperature

    Get PDF
    We have shown that a coherently driven solid state medium can potentially produce strong controllable short pulses of THz radiation. The high efficiency of the technique is based on excitation of maximal THz coherence by applying resonant optical pulses to the medium. The excited coherence in the medium is connected to macroscopic polarization coupled to THz radiation. We have performed detailed simulations by solving the coupled density matrix and Maxwell equations. By using a simple VV-type energy scheme for ruby, we have demonstrated that the energy of generated THz pulses ranges from hundreds of pico-Joules to nano-Joules at room temperature and micro-Joules at liquid helium temperature, with pulse durations from picoseconds to tens of nanoseconds. We have also suggested a coherent ruby source that lases on two optical wavelengths and simultaneously generates THz radiation. We discussed also possibilities of extension of the technique to different solid-state materials
    • …
    corecore